Strings and Variables

To understand primitives, we have to first understand variables.
Variable is a way to store some value which you can use later in the program.
To create a variable, we will write .. and then the ble nane ,then . ... . then a string in single quotes.

What this will do is, it create a binding between variable name and its value. Now, from now on this variable name can be
used if you want to use the value it is pointing to.

To print this, we will use .1og ( nar

will print the value pointed by this variable.

There are some rules to write variable names.
® can not start with a number. (can have number in between)
® can not include any special character (except - and ) can
® contain any any alphabet can not give space between

characters.

can not use any keywords as variable names.

There is a convention for variable names for multiple words.

let firstname = 'Lionel'; //normal

let firstName = 'Lionel'; // camel case

let first_name = 'Lionel'; // snake case

let first-name = 'Lionel'; // kebab case (this you can not use as variable names can not have special characters)

In IS, there is a convention to use camel case.

What will be the output of below code.

let firstName = 'Lionel';

let anotherName = firstName;

console.log(anotherName); // Lionel

As we know i is pointing to -1’ in memory. anc me will also point to ‘Lionel’ now.

So the output will be ‘rionel’

What will happen, if we add two strings?

let firstName = 'Lionel';
let lastName = 'Messi';
let anotherName = firstName + lastName;

console.log(anotherName); // 'LionelMessi';

If we add two strings, it will create a new string with one string concatenated to another.
Now, =notheriane  is pointing to “Lioneivessi’

What if we have to add space in between?

Strings and Variables



One way is to create a new variable for space.

let firstName = 'Lionel';

let lastName = 'Messi';

let space = ' ';

let anotherName = firstName + space + lastName;

console.log(anotherName); // 'Lionel Messi';

Another way is to add string directly without creating a variable.

let firstName = 'Lionel';
let lastName = 'Messi';
let anotherName = firstName + ' ' + lastName;

console.log(anotherName); // 'Lionel Messi';

All three are strings, the only difference is the first and last string are referenced through variable and the middle is string
is written as it is.
This is the use case of variables, we dont have to write ;i .,c1 uesci- everywhere. We can just use ., 1. u-ne Variable.

You can not use multiplication, division and subtraction with strings, only addition which will cause concatenation.

Here we are using single quotes to write strings.

We can use double quotes also and backticks to create strings.

'Hello world'
"Hello world"
‘Hello world®

They differ in a way how they handle special characters.

Backslash has some special powers inside strings. Whenever a .\ is found inside string, it indicates the character after it has
some special meaning. This is called escaping characters.

For example, if you want to create a line break, between characters, you can use=

let firstName = 'Lionel\nMessi';
console.log (firstName) ;

/*

Lionel

Messi

=Y

If you want to use single quote inside a string with single quotes.

let name = 'Lionel\'s Messi';

console.log(name); // Lionel's Messi

Also in JS, string and character is same thing.

Strings and Variables



let something = 'a'; // this is a string
let anything = 'abc'; // this is also a string

Backticks (template strings)

Usefulness of template strings, is that we can include variables inside strings. We dont have to use ; operator multiple
times ton include variables.

The syntax is to use : () . This will inject variables inside string. You can inject any Javascript expression.
|let firstName = 'Samarth';
let lastName = 'Vohra';
let state = 'Delhi';
let favlLang = 'Javascript';
let greeting = 'My name is ' + firstName + ' ' + lastName + '. I live in ' + state + '. My favorite lang is ' + favlLang;
let greeting2 = 'My name is ${firstName} ${lastName}. I live in ${state}. My favorite lang is ${favLang} ;

console.log(greeting) ;

console.log(greeting?2) ;

Also with template strings, it is very easy to rearrange strings.

Strings and Variables



Numbers

You can store numbers in variables, like this.

let num = 15;
console.log (num) ;

As you have seen, we have used 1= keyword for both strings and numbers.

let num = 10;
num = 20.5;

num = -60;

In javascript there is no different data types for float and negative numbers.
Numbers are super flexible in JS.

We can do all kind of mathematical operations on numbers, like addition, subtraction,
multiplication, division and modulus (%).

Modulus is used for remainder.

There is also exponentiation operator in Javscript

let num = 10**3;
console.log(num); // 1073 = 1000

What will be the output of the below code?

let num = 20 + 3 * 4;
console.log (num); // 32

Precedence of operators

Parenthesis have highest precedence
Then exponentiation operator.
Then multiplication and division have same precedence.

Then addition and subtraction.

Numbers



If two operators have same precedence, then value is calculated from left to right.



Numbers

Some things about variables

You can not redefine variables declared with 1et

let something = 'Hello world';

let something = 'Hello world'; // error

But what you can do is reassign variables.

let something = 'Hello world';
something = 'Other thing';

console.log(something); // Other thing

There is one interesting thing about Javascript, is that it is weakly typed, which means we can
reassign one variable to different types.

let something = 'Hello world';
something = 20;

console.log(something); // 20

C++ is a strongly typed language. You can assign a variable of one type to another.



Some things about variables



Booleans

let hello = true;
console.log(hello); // true
let other = false;

console.log(other); // false

We can assign only two boolean values, true and false.

We can get these booleans using conditional operators also.

let score = 100;
let to = score === 100; // true

console.log(to);

-—= is an equality operator. Similarly there is ' operator.
These operators can be used to compare any values.

There are other comparison operators like, >, <, 2, <.

Booleans



Decision making
IF

Syntax for it statement is given below.

if (some condition that should evaluate to true or false) some code to run

For example

if (true) console.log('It is true');

if (false) console.log('It is false');

You dont usually write these true and false directly, you write some condition inside it.

let score = 34;
if (score >= 33) console.log('Pass!!'");
// you can write the above code as follows

if (score >= 33) // true
console.log('Pass!!");

Similary

let score = 32;
if (score >= 33)

console.log('Congratulations');
console.log('Pass!!"'");

When you run the above code, ra=s!! also prints.

This is because : r statement will run only the single statement. If you want to run multiple
statement for the .+ statement, you have to create a block.

Block is used to group multiple statements, where it is expecting only a single statement.

To create a block, we have to use curly braces.

console.log('Line one');
console.log('Line two');

Decision making



The above code is a valid JS code.

So, to run multiple statements for ic, we have to create a block.

let score = 34;
if (score >= 33) {

console.log('Congrats!!'");

console.log('pass!!'");

With the help of it statement, we are able to conditionally execute some lines.

ELSE

If you want to run something, if the condition fails, we can usecise

let score = 30;

if (score >= 33) {

console.log('Congrats!!");

console.log('pass!!"');
} else {
console.log ('Hehe, faill!!');
}
IF ELSE

We can also apply multiple conditions using if-else

let score = 85;

if (score > 90) {
console.log ('A");

} else if (score > 80) {
console.log('B');

} else if (score > 70) {
console.log('C");

} else {
console.log('D");

Decision making



It will run the statement belonging to the first condition which is true.

Decision making



Logical Operators
&&

Both condition needs to be true.

let score = 90;
let attendance = 65;

if (score > 90 && attendance > 75) {
console.log ("A+');

} else {
console.log ('A') ;

Logical OR operator means, any one can be true

let score = 92;
let attendance = 73;

if (score > 90 || attendance > 75) {
console.log ("A+");

} else {
console.log ('A");

Logical not operator. Its a unary operator. It flips the value given to it.

let score = 21;
let isPassed = score > 33;

if (!isPassed) {
console.log ('Fail');

As soon as the final result of the logical operation is known, execution stops.

let score = 50;

if (score > 33 || firstName) ({



Logical Operators

console.log('Pass!!");

In the above code rirstwane is not defined, still code workds fine.

This is because, execution stops as soon as it check score > 33 is true.

let score = 50;

if (false && firstName) {
console.log('Pass!!"'");
} else {
console.log ('Fail!!");



Logical Operators



Functions

Functions
Functions are the programs within a program. We can run it multiple times within a

program.

The syntax for function is as follows

function function name () {
// code to run

For example, you can define a function as follows

function sum() {
let numl = 10;
let num2 = 30;

console.log (numl + num2);

Function on its own will do nothing, until we call it.

To call function we have to write function name with open and closing brackets

function sum() {
let numl = 10;
let num2 = 30;

console.log (numl + num?2);

sum(); // 40

We can call this function as many times, as we want.

function sum() {
let numl = 10;
let num2 = 30;

console.log (numl + num?2);

Functions



We can pass value to functions

function sum(num3) {
let numl = 10;
let num2 = 30;

console.log (numl + num2 + num3);

sum(10); // 50

We are passing 10 to the function. To access 10 inside the function, we name an

argument inside the function just like we name a variable.

S0, 1unz is now pointing to 10.

We can call this function multiple times with different values.

function sum(num3) {
let numl = 10;
let num2 = 30;

console.log (numl + num2 + num3);

sum(10); // 50

sum(30); // 80
sum(90); // 130

The first time the function runs, nunz

will be pointing to 30.

To return something from function, we can use the ret

function sum(num2) {
let numl = 20;
let ans = numl + num2;

return ans;

Functions

will be pointing to 10, the second time, nun3

- keyword.



Returning value from the function

sum (20) ;

You can use return statement only once inside a function. You are calculating the answer
and returning its value.

As of now, the above code is doing nothing.

You can store the value returned by the function in a variable.

function sum(num2) {
let numl = 20;
let ans = numl + num2;
return ans;

}

let resl = sum(20);
console.log(resl); // 40;

let res2 = sum(50) ;
console.log(res2); // 70

Challenge (grade calculator)

Create a function which takes total marks of student as an argument and return a grade
for that student.

Functions






undefined and null

How do we declare a variable?

let someVariable = 'Lionel';

console.log(someVariable); // Lionel

But what if we declare a variable but do not assign it.

let someVariable;

console.log(someVariable); // 2?2

If we run the above code, undefined gets printed on the console.

ndetined in JSis used to represent absence of a value. We did not assign ...a-inea

to the variable. JS automatically assign undefined to the variable, if we do not assign it.

This can be useful inside an ; - statement to check if a variable is ever been assigned a value
or not.

let email;

if (email === undefined) {
console.log('Email is required!!'); // this will be printed
} else {

console.log(email) ;

To check for undefined, we can use JS inbuilt keyword undefined.

If we reassign a variable, then it will not be undefined

let email;
email = 'abc@gmail.com'

if (email === undefined) {

console.log('Email is required!!");

undefined and null



} else {
console.log(email); // this will be printed

Another example (undefined in argument)

function greeting (firstName) {
console.log (firstName); // Lionel

greeting ('Lionel') ;

But what if we don’t send an argument to the function.

function greeting (firstName) {
console.log (firstName); // undefined

greeting () ;

When the argument is not provided, undetined will be assighed to firstiame .

Another example (undefined in return)

function sum(numl) {
console.log (numl) ;

let result = sum(20);
console.log(result); // undefined

what if nothing is returned from the function. Then in that case, .-, variable will be

result variable is going to store the value, whatever returned from the function. But

p0|nt|ng to undefined -
From above examples, we can see that ... ... gets implicitly assigned by the JS, if we
ourselves do not assign some value.

Sometimes, in your program you want to clear some value. For example when user clear
the form or clear the input field, unselect the dropdown, etc.

In that case, we can explicitly assign ....-r:..a to a variable.

undefined and null



let email = 'abc@gmail.com';

// For example, user clears a form

email = undefined;

console.log(email); // undefined

But there is one problem with the above approach. We do not know, the variable is not
defined or the variable is explicitly set undefined. And sometimes it is very important to
know the difference.

So, for this JS gave us another data type called nu11 which also represents o

value .

let email = 'abc@gmail.com';

// For example, user clears a form

email = null;

console.log(email); // null

Challenge (grade calculator contd.)

Add feature to the function. When no marks is provided by the user, set grade to =

undefined and null



Functions - Multiple arguments and
argument defaults

Passing multiple arguments

function sum(numl, num2) {

return numl + num?2;

let result = sum(4, 6); // 10

We can provide multiple arguments using comma separated values.

will be pointing to 4 and will be pointing to 6.

Providing default value to the argument

function sum(numl, num2) {
console.log(numl); // undefined
console.log(num?2); // undefined

}

sum () ;

We can provide default value to arguments using the below syntax.

function sum(numl, num2 = 20) {
console.log (numl); // undefined
console.log(num2); // 20

sum () ;

Now, if is not provided, its value is going to be 20. If you provide , it will

take that value

function sum(numl = 10, num2 = 20) {
numl); // 50
): // 20

console.log (
console.log (num2

}

Functions - Multiple arguments and argument defaults



sum (50) ;

numl will take the value provided and nun2 will take the default value.

Challenge (grade calculator)

Add default value to marks argument if it is not provided.



Functions - Multiple arguments and argument defaults

Objects

Objects in JS is used to represent a similar group of things. For example, in a to-do
application, we have to store title , description and completion. We can store them
separately. But it will be better if we store them together as they together belong to a to-
do.

Similarly with note-taking app. A note contains a title and description. Instead of storing
these two values separately in two strings, it will be better if we can store them together as
note.

That’s where objects come in. Objects can be used to store similar information in a single
place.

Syntax for objects are as follows

let todo = {
title: 'Buy groceries',
completed: false,
due: 10

}

console.log (todo)

Just like we define other variables with 1=t keyword, we do the same with object.

Object starts with curly braces and inside that we have to write key-value pairs. Keys are
called properties and values can be anything, number, string, Boolean, function or object.

You write properties just like you write variables.

Dot notation

We can access properties from todo using the dot notation.

For example, if we want to print the title of the todo

let todo = {
title: 'Buy groceries',
completed: false,
due: 10



Objects

console.log(todo.title); // Buy groceries
console.log( The title of the book is ${todo.title}’);

Changing properties

We can also change the property of an object.

let todo = {

title: 'Buy groceries',

completed: false,

due: 10
console.log(todo.completed); // false

todo.completed = true;

console.log(todo.completed); // true

Challenge

Create a note object with title, description and pages properties.



Objects

Methods

Methods are nothing but object properties that are function.

As we have seen, object properties can be number, string and Boolean, but object
properties can also be functions.

Syntax:

let marks = {
pa: 90,
fnd: 100,
nalr: O,
totalMarks: function() {
return 90 + 100 + O;

console.log(marks.totalMarks()); // 190

You can also pass arguments to methods

let marks = {
pa: 90,
fnd: 100,
nalr: O,
totalMarks: function(fine) {
return 90 + 100 + 0 - fine;

console.log (marks.totalMarks (50)); // 140

But it will be better if we don’t have to hardcode marks and use the marks on the object
itself.

JS provide a special keyword called -+:- . The value of +.; - is the object itself on which the
method is called.
You can print the value of tnis on the console.

let marks = {
pa: 90,
fnd: 100,
nalr: O,
totalMarks: function(fine) {

Methods



console.log(this);
return 90 + 100 + 0 - fine;

console.log (marks.totalMarks (50)); // 140

this points to the same object on which the method is present.

Now, you can access properties of the object using dot notation on tnis .

let marks = {
pa: 90,
fnd: 100,
nalr: 0,
totalMarks: function(fine) {
console.log (this);

return this.pa + this.fnd + this.nalr - fine;

console.log(marks.totalMarks (50)); // 140



Methods

Arrays

Arrays are used to store collection of multiple items under a single variable name.

Syntax to declare an array

let arr = [2, 'Hello', false];
console.log(notes) ;

Arrays items can be of any type. They do not have to be same.

Grabbing individual items

To grab individual items, we will use the bracket notation, to grab items using its index in the
array. Indexing starts from 0 just like other programming languages.

let arr = ['Messi', 'Ronaldo', 'Neymar'];
console.log(arr[0]); // Messi
console.log(arr[2]); // Neymar

If we try to acces the index that does not exist, we will not get an error, we will get

undefined.

let arr = ['Messi', 'Ronaldo', 'Neymar'];

console.log(arr[10]); // undefined

Setting items
You can also set item at a particular index
let arr = ['Messi', 'Ronaldo', 'Neymar'];

arr[l] = 'Zlatan';

console.log(arr); // ['Messi', 'Zlatan', 'Neymar'];



Arrays



Array properties and methods

length

To get the number of items in an array, there is a property on array which you can access

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo.length); // 3

push ()
Now, lets say, you have to add items to the array, you can use ...+ (, method on an array. You
have to pass the item you want to add to the .....() method.

oush () method will add item to the end of the array.

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo); // ['Buy groceries', 'Complete assignment', 'ST-1'];

todo.push ('ST-2") ;

console.log(todo); // ['Buy groceries', 'Complete assignment', 'ST-1', 'ST-2'];
pop ()
We can also remove item from the end of an array using ... () . .- () method also returns the

remove item which you can store in a variable.

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo); // ['Buy groceries', 'Complete assignment', 'ST-1'];

let removedItem = todo.pop/();

console.log(todo); // ['Buy groceries', 'Complete assignment']
console.log (removedItem); // 'ST-1'

unshift ()

This method add items to the beginning of an array.

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo); // ['Buy groceries', 'Complete assignment', 'ST-1'];

Array properties and methods



todo.unshift ('ST-2");

console.log(todo); // ['ST-2', 'Buy groceries', 'Complete assignment', 'ST-1'];

shift()

This method is used to remove item from the beginning of an array.

let todo = ['Buy groceries', 'Complete assignment',6 'ST-1'];

console.log(todo); // ['Buy groceries', 'Complete assignment', 'ST-1'];

let removedItem = todo.shift () ;

console.log(todo); // ['Complete assignment', 'ST-1'];
console.log(removedItem); // 'Buy groceries'

The method discussed above changes the original array.
Join()
This method returns the string. by concatenating all the elements of any array.

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo.join());

// "Buy groceries,Complete assignment, ST-1"
By default it will use comma as a separator. You can pass different separators

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo.join("'="));

// "Buy groceries-Complete assignment-ST-1"

includes ()

Return true or false depending upon whether an array includes a certain element or not.

let todo = ['Buy groceries', 'Complete assignment', 'ST-1'];
console.log(todo.includes ('ST-1")); // true

console.log(todo.includes ('ST-2")); // false

Array properties and methods



Loops

inefficient. Instead we can use loops to do so.

for loop

for (let 1 = 0; 1 <=5; 1 =1 + 1) {
(i

console.log(i); // 01 2 3 45

for (let 1 = 0; 1 <= 5; 1i++) {
(i

console.log(i); // 01 2 3 45

Looping through array.

let todo = ['Assignment', 'ST-1', 'Buy groceries'];

for (let i = 0; i < todo.length; i++) {
console.log(todo[i]);

for..of loop

There is one more syntax which you can use to loop through array.

let todo = ['Assignment', 'ST-1', 'Buy groceries'];

for (let myTodo of todo) {
console.log (myTodo) ;

The value of «yrodo variable will change at every iteration.

for..in loop

To loop through object, we can use for-in loop.

let obj = {
english: 80,
maths: 90,

Loops



hindi: 70

for (let key in obj) {
console.log(key); // english | maths | hindi
console.log (obj[key]l); // 80 | 90 | 70

break

If you want to break out of the loop at a certain point, we can use rr==x keyword

let arr = [90, 80, 30, 60, 10];
for (let 1 = 0; i < arr.length; i++) {
if (arr[i] < 33) {

break;

console.log(arr[i]);

As soon as =r-[i] - 33, it breaks out of loop.

continue

If you want to continue the loop, without executing the remaining code, we can use

continue keyVVOFd.

let arr = [90, 80, 30, 60, 10];
for (let i = 0; i < arr.length; i++) {
if (arr[i] < 33) {

continue;

console.log(arr[i]);



Loops

3 ways to declare a variable

We have seen one keyword .. using which we are declaring variables.

There are two more keywords using which we can declare variables.

const
Just like 1ct , we can declare variables using const keyword.
const email = 'abc@xyz.com';

console.log(email) ;

Difference between 1ct and const is that, with const you can not reassign

variables.

const email = 'abc@xyz.com';
email = 'cnfdhsijk'; // error

Although, you can reassign properties of an object.

const person = {

username: 'messi',
bi
person.username = 'ronaldo'; // valid
person = {

username: 'messi'

}: // Error

Here, ver=on variable is still pointing to the same object. You are not reassigning

person variable.

Another difference between 1ct and const is that with const you cannot just

declare variables and not assign it.

In case of .. , it is okay to declare a variable but not assign it. JS will automatically assign
inderinea toit. In case of ...« , it is compulsary to assign it a value.



3 ways to declare a variable

const username; // Error

const email = 'abc@xyz.com'; // Valid
var
var is similar to 1=t . Previously there is only one way to declare variables and that
is using var , but JS introduced two more keywords 1t and const to declare
variables.

var username = 'hello';

username = 'Sam';

console.log(username); // Sam

The difference between var and 1et is that with var you can redeclare variables.

var username = 'hello';
var username = 'Sam'; // Valid

console.log (username); // Sam

var let const
/4 redeclare « X cannot redeclare « X cannot redeclare
variables variables variables

o reassign o can reassign « X cannot reassign variables variables variables



3 ways to declare a variable



Execution context and Call stack

We will deep dive into JS Engine to take a look how JS Engine actually execute JS code.
Whatever code is executed in JS is executed inside execution context.
Execution context consists of two things

®* Memory creation phase

® Code execution phase

Before executing any line of code, JS Engine will create an execution context. The first EC
that is created is called Global Execution Context.

What JS engine will do is skim out all the variables and functions which are in global scope.

var username = 'Zeeshan';
var person = {
email: 'abc@xyz.com',

password: 'something-secure'

i

console.log(username) ;

For example

First, memory creation phase will run. In memory creation phase, all variables get skimmed

Memory creation phase

username: undefined

person: undefined

out and are assinged undefined -

After memory creation phase gets completed, code execution phase gets started. In this
phase JS code will be executed line by line and .c-.....- and ... ... will be assigned
respective values.

Execution context and Call stack



Code
Memom/ creation phase execution
Phase

username: Zeeshan

person: {
email: 'abc@xyz.com',
password: 'something-secure'

}

Its not the variables that are skimmed out during memory creation phase. Functions
are also skimmed out. But in case of functions, undefined is not assigned, but the
whole function gets stored there.

var username = 'Messi';
function sum() {
var numl = 10;

var num2 = 20;

return numl + num?2;

sum () ;

console.log (username) ;

As we have discussed, during memory creation phase, variables and functions are skimmed
out.

Memory creation phase

username: undefined

sum: function sum() {
var numl = 10;
var num2 = 20;

return numl + num2;

}

Execution context and Call stack



Now, code execution phase will run.

When first line is executed, vess: will be assigned to username.

Memoﬁ./ creation phase

username: Messi

sum: function sum() {
var numl = 10;
var num2 = 20;

return numl + num2;

}

Then there is function definition, so nothing will be executed.

Then there is a function call. Whenever a function is called, a new execution context is

created for that function. And it will go through its own memory creation and code
execution phase.

Memoﬁ/ creation phase

numl: undefined

num2: undefined

Code

Memory creation phase , execution
pmse

username: Messi

sum: function sum() {
var numl 10;
var num2 = 20;

return numl + num2;

}

Execution context and Call stack



Then the code execution phase for this execution context will run, which will assign 10 and
20 to respective variables.

Me,mom/ creation phase

numl: 10

num2: 20

Code

Memory creation phase , execution
Pmse

username: Messi

sum: function sum() {
var numl = 10;
var num2 = 20;

return numl + num2;

}

Then the ... ... statement is executed. Whenever a function return something or its
execution ends, its execution context gets destroyed.

And when all of the code gets executed, Global execution context also gets destroyed.

Call stack

These execution contexts are managed inside a stack called Call Stack.

Execution contexts are pushed and poped from this call stack.

Execution context and Call stack






Hoisting

Hoisting
What will be the output of the below code?

var a = 20;
function myFunc () {

console.log ('Inside my function');

console.log(a); // 20
myFunc () ; // Inside my function

Now, what will be the output of below code?

console.log(a); // undefined
myFunc(); // Inside my function

var a = 20;

function myFunc () {
console.log('Inside my function'):;

The above code will not produce error.

As we have discussed in Execution context, in memory creation phase, all global variables are
assigned undefined and all functions are assigned whole function code before any code is
executed.

When the first line of code runs, it will find . in global scope whose value is undefined.

nyrunc () variable is assigned whole function, so it will be executed

Question

function a() {
console.log(b); // undefined
var b = 20;



Scopes

Scopes

What will be the output of below code?

var b = 20;

function a() {
console.log(b); // 20

languages.
Scope for a variable roughly can be defined, where that variable can be accessed.

For example, in the above case, variable , has global scope. It can be accessed any where in
the code.

When the function execution context is created, it will try to find ., in its local scope (or
memory). If it does not find it there, it will try to find it in the lexical scope (or memory or
environment) of its parent.

Code
Memory creation phase execution
phase

Avironment o rent W
UL J

Code
executlion
Pko.se

a: function a() {
console.log(b); // 20
}




Another example

function outer () {
var b = 10;

inner () ;

function inner () {
console.log(b); // 10

outer () ;

Lets see how this function runs

First the memory creation phase will run for global execution phase

Memory creation phase cep

outer: function outer() {
var b = 10;
inner();

function inner() {
console.log(b);
}

}

Then the .- () function will be called. To run that function, an execution context is created and its
memory creation phase is run.

Memor‘y creation phase cep

b: undefined

inner: function inner() {
console.log(b);
}

Me_mcry ereation phase cep

outer: function outer() {
var b = 10;
inner();

function inner() {
console.log(b);
}
}

Then the outer function will start exeuting one by one.

First », will be assigned 100

Then ;... function will be called. The execution context for ;... function will be created.

Scopes



When the : ..., function is executed line by line, it will look for variable ., in its local scope.
When it does not find it there, it will look it in the lexical environment of its parent. This chain

Hemnr‘tr( creation phase cep
LA A g-",.u",.-x'/.-!-/// A
/WE/////// o ’;ﬁém

Mewmory creation phase cep

b: 100

inner: function inner() {
console. log(b);

} /e /jxﬁ,///jfx,x/x;/ffﬁf e,

Hamnﬂ‘( creation phase cep

outer: function outer() {
var b = 10;
inner();

function inner() {
console.log(b);
}

}

of lexical environment is called Scope Chaining

What will happen if we call inner before assigning b

function outer ()

inner () ;
var b =

Scopes




Scopes



More differences between var, let
and const

Blocks

To understand this concept, we must know what is a 1.« in javascript. You can create a

block using curly braces.

The above code is a valid JS code. We have used blocks in ;- statement when we
have to use multiple statements inside it .

{
console.log('Hello world');
t

console.log('Hello India');

Scope

1ot and ...+ are block scoped while ... is a function scoped. That means the variables

declared using

sar is not block scoped.

let score = 50;

if (score > 33) {

var x = 20;

More differences between var, let and const



let score = 50;
if (score > 33) {

let x = 20;

console.log(x); // Error x is not defined

Variable = is only accessible inside the it statement. As soon as the block ends,
the variable x gets vanished. Outside the i block, there is no variable =, so you

will get an error.
1.+ is only accessible inside the block it is declared.

console.log(x); // 20

Question
What will be the output of below code?

let x = 10;

let x = 20;
console.log (x); // 20

console.log(x); // 10

As 1:t is block scoped, it will not conflict with that in global scope.

Question

What will be the output of below code?

console.log(a); // undefined

console.log(b); // Cannot access b before initialization
console.log(c); // Cannot access c before initialization
var a = 10;

let b = 20;

const ¢ = 30;

More differences between var, let and const



var x = 10;

var x = 20;
console.log(x); // 20
}

console.log(x); // 20

Hoisting Question

let and con<t are hoisted differently as compared to ... .
let and con<t are hoisted but they remain in temporal dead zone. You can not
access those variables declared with .- and ... until they are in temporal dead zone.

They remain in temporal dead zone till they are initialized.

Take a look at the error. Error is not that it is not defined. The error is you can not access
them before initialization.

More differences between var, let and const






Higher order functions

Functions that operate on other functions, either by taking them as arguments or by
returning them, are called higher order functions.

Passing function to another function

function a(fn) {
console.log('Inside a');
fn();

function b () {
console.log('Inside b');

a(b);
// Inside a
// Inside b

You don’t have to declare a new function to pass to another function. You can declare
inside an argument directly like below.

function a(fn) {
console.log('Inside a');
fn();

// function b () {
// console.log('Inside b');

/7 }

a(function () {
console.log('Inside b'");

1)

// Inside a

// Inside b

function a() {
function b () {
console.log('inside b')

Higher order functions



Returning function from another function

console.log('inside a');
return b;

}

let temp = a(); // inside a
temp(); // inside b

Some real-world HOF

Lets say you have an array with numbers, strings and booleans. You have to write functions
that will return all the strings present in the array, then all the numbers and then all the

booleans.

Higher order functions



function getString (arr) {
let result = [];

for (let item of arr) {

if (typeof item === 'string') {
result.push (item) ;

return result;

function getNumber (arr) {
let result = [];
for (let item of arr) {

if (typeof item === 'number') {

result.push (item) ;

return result;

function getBoolean(arr) {
let result = [];

for (let item of arr) {

if (typeof item === 'boolean') {
result.push (item) ;

return result;

let arr = [120, 'Hello', 90, false, 'World', true, 20, 80, 'Messi'];

console.log(getString(arr));
console.log(getNumber (arr));
console.log(getBoolean (arr));

As you can see, you are repeating a lot of code. You can extract out the logic of checking
item and pushing it into the array as it is same for all the 3 functions. The changing part is
the condition. We can pass a function to check for 3 conditions.

Higher order functions



function getString (item) {

return typeof item === 'string';
}
function getNumber (item) {

return typeof item === 'number';
}
function getBool (item) {

return typeof item === 'boolean';

function get (arr, fn) {
let result = [];

for (let item of arr) {
if (fn(item)) {

result.push (item) ;

return result;

let arr

[120, 'Hello', 90, false, 'World', true, 20, 80, 'Messi'];
console.log(get (arr, getString));

console.log(get (arr, getNumber));
console.log(get (arr, getBool));

We are passing function whose job is check for different type into a function whose job is
to check and push items into the array. Separation of concern.

Higher order functions



Some more array methods

forEach()

soreach method takes callback function as an argument which is called for each item

of an array. You are not calling this function yourself. ... is calling your function for each
item. You are just passing it as an argument.

You can create variable for a function and then pass or you can directly declare a function inside
an argument.

The callback function you pass, receive array item as an argument.

let players = ['Messi', 'Ronaldo', 'Neymar', 'Zlatan'];

players.forEach (function (item) {
console.log (item) ;

b

/%
Messi
Ronaldo
Neymar
Zlatan
=/

The callback function also receive index as a second argument.

let players = ['Messi', 'Ronaldo', 'Neymar', 'Zlatan'];

players.forEach (function (item, index) {
console.log( ${item} at index ${index}’);
H)

/*

Messi at index O
Ronaldo at index 1
Neymar at index 2
Zlatan at index 3
*/

map()

This method also takes callback function as an argument, but return a new array populated by the
result of calling that callback function. The function you passinas a

Some more array methods



callback will be called for each item in an array and whatever you return for that item will
become the new item in a new array.

let marksYouDeserve = [9, 8, 7, 8];

let marksYouGet = marksYouDeserve.map (function (item) ({
return item + 30;

b

console.log(marksYouGet); // [39, 38, 37, 38]
console.log(marksYouDeserve); // [9, 8, 7, 8]

filter()

This method also takes callback as a function and return a new array. The callback function will be
called for each item.

If you return true, then that item will be included in the new array otherwise it will not be
included.

let marks = [1, 2, 3, 4, 5, 6, 7, 8];

let evenMarks = marks.filter (function (item) {
if (item % 2 === 0) return true;
else return false;

b

console.log(evenMarks); // [2, 4, 6, 8]
console.log (marks); // [1, 2, 3, 4, 5, 6, 7, 8]

There are many other methods, you can read them on MDN docs.



Some more array methods






Closures

Consider the below function

function someFunc () {
let username = 'Samarth';
function printName () {

console.log (username) ;
printName () ;

someFunc (); // Samarth

What will be the output of below function? As already discussed, inner function will have
access to the lexical environment of its parent.

So function . w.ne Will have access to .--.... variable which out of its scope but is in the

lexical scope of its parent.

Now, what if, instead of calling .. .uarne function inside scnerune , We return
printnane function and call it outside the scope of -onerunc , like below. What will be

the output?

function someFunc () {
let username = 'Samarth';

function printName () {
console.log (username) ;

return printName;

let fn = someFunc();
fn(); // Samarth

It will print Zionel, even though the usernane variable is not in its scope.
How, is it working? How printiane function has access to username variable even
though it is not in its scope?

Thisis a c10-.-= = A function bundled together with references to its surrounding state or

we can say lexical environment is called closure.

Closures



Closures

When ... .. function was defined, it has access to ..-....... variable. So, it will always
have access to ..-.....- variable even though the variable is not in its scope or its parent
scope.

Use of closure

There are many uses of closures, one of them is

Before classes, JS does not have any way to declare private properties or methods, but with
closures, you can emulate private methods.

Lets say you want to build a counter. But you dont want user to update count directly but
give them some methods like i cnent , decrenent to change the value of count.

You can do is easily in other languages with classes and private property ...+ . InJS, you
can use closure.
function counter () {
let count = 0;
return {

getCount: function() {
return count;

let counterl = counter():;
console.log (counterl.getCount ()) ;

We are creating a function counter which is going to return an object though which
we can change the value of count variable using closures. As you can see, end user
will only have access to the object with setcount method. User have no access to

-ount variable. So they can’t manipulate it directly.

You can provide different methods to manipulate count for end user.

function counter () {
let count = 0;
return {
getCount: function() {

return count;

}l



increment: function () {
count += 1;

b

decrement: function () {
count -= 1;

b

reset: function() {
count = 0;

let counterl = counter();
console.log(counterl.getCount()); //
counterl.increment () ;
counterl.increment () ;
counterl.increment () ;
counterl.decrement () ;
console.log(counterl.getCount()); //
counterl.reset () ;
console.log(counterl.getCount()); //

Closures






Prototypes

Consider the below example

We accessed titie property and d=sc method on tcdo object.

let todo = {
title: 'Buy groceries',
desc: function() {
return ‘You have to ${this.title} ;
}
bi

console.log(todo.title); // Buy groceries
console.log(todo.desc()); // You have to Buy groceries

console.log(todo.toString()); // [object Object]

We also accessed -s:.inc method on .. object. But this method does not exist on todo
object. We should be getting ...c-ri.-a , but instead we are getting some value, which
indicates that this method do exist on the .4, object. How is it possible?

There is a thing in Javascript called v oot yoes

If you try to access a property of an object, what JS will do is, it will try to find that property
in the object. If it fails to find that property, then it will search its prototype for the
property. Prototype is another object which is used as a fallback source of properties.

Prototypes



{_defineGetter - A

__defineGetter__()

__defineSetter__: function
__defineSetter__ ()

let todo = {

tltl?: 'Buy.grocerles', . __lookupGetter__: function

EREC e doncl = LookupGetter__ ()

return 'You have to ${this.title}’; = P —

__LlookupSetter__: function

__lookupSetter__()

__proto__:
constructor: function Object()
hasOwnProperty: function hasOwnProperty()

isPrototypeOf: function isPrototypeOf()

Object.prototype propertyIsEnumerable: function
propertyIsEnumerable()

toLocaleString: function tolLocaleString()

String: function toStrin

When you try to access tostring property on an object, it will first search the object

for that property. It didn’t find that property. Then it will search the prototype of that

property which is object.protocype . It will find that property and displays the result.
So, prototype is just another object which is used as a fallback source for properties.
Every object in Javascript has a prototype.

You can check the prototype of any object using ... property.

So,

todo. proto === Object.prototype
As, we have seen object.prototype is an object, so it must have its own prototype.
What is the prototype of ooject . prototype. Itis null.

todo. proto . proto === null
This chain of prototypes is called rrototypal chain. As there must be an end to this
chain, the prototype of ovicct. protorype is null.

Prototypes



{_defineGetter 'won
L@ Py

# _defineGetter
/\u } /

= /' _defineSetter__: function
\ : \
/// Tet todo| = \\ v _defineSetter__() \
title: 'Buy groceries' / ~ \ proto //——h\\~
< : ! / —LlookupGetter__: function

\

5 i / \
desc: function() { \ i _lookupGetter__() \ ‘%( null )

return 'You have to ${this.title}’; /

) __LlookupSetter__: function \\\_’//'

/! _lookupSetter__()

\7\_/// ( e

constructor: function Object()

hasOwnProperty: function hasOwnProperty()
isPrototypeOf: function isPrototypeOf()

Object.prototype \ propertyIsEnumerable: function /
\ propertyIsEnumerable() J"{//
\
toLbﬁi;:String: function tolLocaleStridg()
String: function toStrinng
27

val;:5¥$\£5253332’39Lu66¥() }

Every object by default has a prototype which is object.prototype.

If you create another object, that too has ovject.prototype as its prototype.

Accessing properties on Arrays

We have discussed few properties and methods on arrays, like ... and ... . But how are
we able to access these properties and methods on an array. We have seen that only
objects have properties and methods not arrays.

What JS will do behind the scenes, is convert this array to an object.

['Messi', 'Ronaldo', 'Neymar']

1: Ronaldo,
2: Neymar,

So, arrays are basically an object, on which we can access properties and methods.

Prototypes



For example, we can access ..., property.

We have seen the object to which an array is converted to. But that object do not have ...,
and .., properties. Where do those properties come from.

These properties come from its prototype. As we have discussed that when we try to access
the property on an array, it is converted to an object. So that object has a prototype which
has all these properties and methods, ..o+ , pop , shiet , unenice , etc.

— o
~ defineGetter__: function _defineGetter>()

At Suacclan k) _defineSetter_: function _defineSetter_()

SPRCAL <2 EunEL10A coREN: () _lookupGetter_: function _lookupGetter_()
0: Messi, \

\ it KO
1: Ronaldo, - constructor:. function Array() lookupSetter_: function _lookupSetter_ ()
2: Neymar,

length: 3 copyWithin: fun

proto
constructor: function Object()

hasOmnProperty: function hasOmnProperty()

\_ fill: function £i110)

“isPrototype0f: function isPrototype0f() ~

- =

This is a prototypal chain.

When we try to access property on an array, it will first convert array to an object. If it does
not find property there, it will search ..., . ccory0- , then it will search

)bject.prototype.

Accessing properties on strings

When we were discussing strings, we used some properties and methods like touppercase ,
oLowercase , crin , €tc. How are we accessing these properties and

methods on strings?

Just like arrays, strings are converted to objects when you try to access properties on that
string.

~defineGetter_: function _defineGet
anchor: function anchor() _defineSetter_: function _defineSetter_()
at: function at() ."\_ / —lookupGetter__: function _lookupGetter_ ()
big: function bigO) Y =heets lookupSetter_: function _lookupSetter_()
blink: function bLink() \ _proto_
bold: function bold() / constructor: function Object()

hasOwnProperty: function hasOmnProperty()

“gPrototype0f: function isPrototype0f() -~

Prototypes



Inheritance

Prototypes can be considered as inheritance, as it can be looked as objects are inheriting the
pI’OpertieS Of Object.prototype -

Prototypes






Constructor functions

What will be the output of below code?

function user () {

const userl = user();

console.log(userl); // undefined

We have already discussed that, if you don’t return anything from the function then

undefined is returned.

Now, what will be the output of below code.

function user () {

const userl = new user();

console.log (userl); // {}

An empty object is returned, if we use new keyword before function call.
We can generate objects using functions using the ..., keyword infront of function call.

These functions are called Constructor functions.
We can add properties to the object that is being generated using the thi= keyword.

function user () {
this.username = 'Samarth';
this.email = 'sam@xyz.com';
}
const userl = new user();
console.log(userl); // { username: 'Samarth', email: 'sam@xyz.com' }

We can pass custom values for username and email.

Constructor functions



function user (username, email) {
this.username = username;
this.email = email;
}
let userl = new user('messi', 'messi@xyz.com');
console.log (userl) ;
let user2 = new user('ronaldo', 'ronaldo@xyz.com') ;

console.log (user?2) ;

Constructor functions are basically used as a blueprint to generate objects of same type
with same properties.

If there are no constructor functions, we have to hardcode objects with the same properties
on every object.

Lets add methods to the generated object.

function user (username, email) {
this.username = username;

this.email = email;

this.description = function () {
return "My name is ${this.username}  ;

}

let userl = new user('messi', 'messi@xyz.com') ;
console.log (userl.description()); // My name is messi
let user2 = new user('ronaldo', 'ronaldo@xyz.com');
console.log(user2.description()); // My name is ronaldo

You can add as many properties you want and all the generated objects will have the same

properties.

There is a convention in JS to capitalize the name of constructor functions. It is just a
convention. It will still work if you don’t capitalize.

function User (username, email) {
this.username = username;

this.email = email;

this.description = function () {
return "My name is ${username} " ;

}

let userl = new User('messi', 'messi@xyz.com');
console.log(userl.description()); // My name is messi

Constructor functions



As we have seen, if we generate objects using curly brace notation, its prototype will
be ovject.prototype. What will be the prototype of the objects generated from
constructor functions. Its prototype will be an object with one property called

~onstructor Whose value is the constructor function itself.

_defineGetter__: function _ defineGetter_ (}

__defineSetter__: function __defineSetter_ ()

__lookupGetter__: function _ lookupGetter__() Object.prototype
__lookupSetter__: function __lookupSetter__ ()

_proto__:

constructor: function Object()

e — -

7t
constructor: function User(username, email) User.prototype
} /

T

description: function description() {

description: function description()

email: "messi@xyz.com" \
email: "ronaldo@xyz.com" i

username: "messi"
username: "ronaldo"

You have created your own custom data type. Just like there are Array datatype, String
datatype., now there is User datatype. You can create new objects of that datatype using

e keyword.

Constructor functions



Now, as you have seen the ... .. method is same for all objects. It will be better that
we move that description method to v orororype.

function User (username, email) {
this.username = username;
this.email = email;

User.prototype.description = function() {
return "My name is ${this.username} ;

let userl = new User('messi', 'messi@xyz.com');
console.log(userl.description());

let user2 = new User('ronaldo', 'ronaldo@xyz.com');
console.log (user2.description());

Now, the prototype chain will look like below

Constructor functions



/ _defineGetter__: function _deFineGetter_C’),}_!

/ __defineSetter__: function __defineSetter_ ()

/ __lookupGetter__: function __lookupGetter__() Object.prototype
|

__lookupSetter__: function __ lookupSetter__()
—proto__:

constructor: function Object()

constructor: function User(username, email) User.prototype
description: function description()

email: "messi@xyz.com"
username: "messi" email: "ronaldo@xyz.com"
username: "ronaldo"

Now, when we try to access q---.:. o, property on ..., object, it didn’t exist. So it will
check its prototype for that method.

Constructor functions






Class syntax

Just like 1.+ and o5+ , classes are very new to Javascript. It is just an alternative way to
write constructor functions. It is just the Syntactic sugar. It is doing the exact same thing as
constructor function, its just the sytax is different.

Consider the below constructor function. We have to convert this into Class syntax.

function Person (firstName, lastName, email) {
this.firstName = firstName;
this.lastName = lastName;
this.email = email;

Person.prototype.printBio = function() {
console.log ('My username is ${this.username} ) ;

Person.prototype.getFullName = function () {
return "${this.firstName} ${this.lastName}  ;

const personl = new Person('Lionel', 'Messi', 'abc@gmail.com'):;
console.log(personl);

The syntax for class, is we have to start witl c12:= keyword and then name of that

class.

You can literally copy paste the constructor function.

class Person {
constructor (firstName, lastName, email) {
this.firstName = firstName;
this.lastName = lastName;
this.email = email;

const personl = new Person('Lionel', 'Messi', 'abc@gmail.com');
console.log (personl) ;

You can add methods too. In this case too, you just have to copy paste. Its just the syntax is
different, functionality is same.

class Person {
constructor (firstName, lastName, email) {

Class syntax



this.firstName = firstName;
this.lastName = lastName;

this.email = email;

getFullName () {
return “${this.firstName} ${this.lastName} ;

const personl = new Person('Lionel', 'Messi', 'abc@gmail.com');

console.log(personl.getFullName()) ;

We are getting the exact same behavior as we got with constructor function.

Inheritance

Lets say we want to create a ... class which has all the properties and methods of :-. ...
class. One way is to define a new class and add all properties and methods again on that
class.

Other way is inheritance.

Lets say we want to create a class called ... with all the properties of :...... class. One
way is to copy all the properties and methods from --. .. class.

Other method is Inheritance.

We can create a class that inherits properties from other class. Just like what we did with
prototype inheritance.

class Person {
constructor (firstName, lastName, email) {
this.firstName = firstName;
this.lastName = lastName;

this.email = email;

getFullName () {
return “${this.firstName} ${this.lastName} ;

class Student extends Person ({

}

const studentl = new Student('Lionel', 'Messsi', 'abc@gmail.com');

console.log (studentl.getFullName ()) ;

We can inherit all properties and methods of one class using -...-..- keyword.

Class syntax



Now student class has all the properties ( rirstvame , Tastnane and enai1 ) and all the

methods ( constructor and getrulinane ) of parent class rerson .
You can override some of the methods.

For example, if you want to add some additional fields including already existed fields to
Student class like ... . You can override the constructor function because that’s where

you are initializing properties

class Person {
constructor (firstName, lastName, email) {
this.firstName = firstName;
this.lastName = lastName;

this.email = email;

getFullName () {
return "${this.firstName} ${this.lastName}  ;

class Student extends Person {
constructor (firstName, lastName, email, groupNo) {
super (firstName, lastName, email) ;

this.groupNo = groupNo;

const studentl = new Student('Lionel', 'Messi', 'abc@gmail.com',6 13);

console.log (studentl) ;

Now, the objects created using student class will have groupiio property.
Similarly, you have access to setrulinane methods from parent class.

You can use the same method or you can override it.

console.log(studentl.getFullName()); // Lionel Messi

As there is no method named oetruiinane |, it will check its parent.

You can also override this property just like constructor.

class Person {
constructor (firstName, lastName, email) ({
this.firstName = firstName;
this.lastName = lastName;

Class syntax



this.email = email;

getFullName () {
return "${this.firstName} ${this.lastName} ;

class Student extends Person {
constructor (firstName, lastName, email, groupNo) {
super (firstName, lastName, email) ;
this.groupNo = groupNo;

getFullName () {
return "My name is ${this.firstName} ${this.lastName} ;

const studentl = new Student ('Samarth', 'Vohra', 'abc@gmail.com', 13);
console.log (studentl.getFullName ()); // My name is Samarth Vohra

Just like you have defined new properties on student class, you can also define new

methods on it.

Class syntax



Async programming

Javascript is a synchronous single threaded language.

Single threaded means that Javascript engine can execute only one statement at a time. It
can not run multiple statements. It has a single call stack to execute the statement. It does
not have multiple call stacks to run statements in parallel.

Synchronous means that it will execute statements in order.

Basically, JS Engine will wait for nothing, it will keep on executing single statements line by
line.

But what if we have to wait for some time and then run some code. How you are going to
achieve that in JS.

Lets say you want to run the seconds log statement after 4 seconds.

console.log('start');
console.log('run after 4 seconds');

console.log('end") ;

There is something called sctTineout which is being provided by the browser which

will help you to run some code after some time.

console.log('start');
setTimeout (function () {
console.log ('run after 4 seconds');

}, 4000);

console.log('end") ;

In setTimecut, you have to pass a callback function as first argument and then time in

milliseconds as a second argument. The callback function will run after 4 seconds.

What will happen, first . ... will print, then ... will print instantly then after 4 seconds .~
after 4 seconds Will print.

But how is it possible? We just discussed that JS will wait for none. And it will execute
statements in single order. So, how JS is running consc1-. 10, after 4

seconds.

Async programming



setTimeout IS not a part of JS. Javascript Engine do not have a timer to time for
4seconds and then run the code. It is the browser that has timer and provide us this

setTimeout function.

Browser has many other useful things like console, local storage, session storage, fetch,
viewport, location and many other things.

Browser provide these things to the javascript engine. Javscript as a language has no local
storage, timer, location and other things.

Browser provide these things to the JS engine.

N N e N NN

But how browser is providing these things to Javascript?

Browser provide these things using Web APls. Basically, browser provide some objects,
some functions to JS Engine which we can use to access these functionalities.

setTimeout is one such function which helps us to access timer in the browser

through Javascript.

Lets see how does these things work behind the scenes.

Async programming



console.log('start"');
setTimeout (function () {
console.log('run after 4 seconds');

}, 4000);

console.log('end'") ;

As we have already discussed, before running any code, an execution context is created and
pushed inside a call stack.

As there are no variables, so there is nothing to do in memory creation phase. Then code
execution phase will start. Each line will be executed line by line.

When first line is executed, JS engine will access the console from the browser and
print start on the console.

“~
“\
\
~

N

Then the second line will be executed, what it wil do is, it will contact the browser.

Browser will start a timer for 4 seconds and register a callback function.

Async programming



7%/

A
P A A A A

After a callback is registered, javascript engine will move to the next line for execution. It
will not wait for 4 seconds to run the callback function because JS is synchronous.

It will execute the last line and print .4 in the console.

Async programming



As the last line is executed, global execution context is popped out of the call stack.
How will that callback which is registered to run after 4 seconds be executed?

As we know, in Javascript everything is executed inside the execution context which is
inside the call stack. So, it is the duty of browser now to send that callback function to the
call stack.

Lets see how, browser send that callback function to the call stack.

Async programming



When 4 seconds elapsed, the registered callback is pushed to the callback queue and will
wait for its turn.

What even loop will do is, it will keep and eye on call stack. As soon as the call stack gets
empty, event loop will push the callback from callback queue in the call stack to get
executed.

As callback is a function, it will create its own execution context and start executing
the code inside it. It will print run after 4 seconds to the console.

Async programming



So, the job of callback queue is to hold all the callbacks that are registered for their turn.

The job of event loop, is to keep an eye on the call stack. Once call stack get empty, event
loop will start pushing callback functions to the call stack.

Question

console.log('start sam');

setTimeout (function () {
console.log ('run after 2 seconds');
}, 2000);

setTimeout (function () {
console.log ('run after 4 seconds');
}, 4000) ;

console.log('end sam');

/*

Start sam

End sam

run after 2 seconds

run after 4 seconds

*/

Question

console.log('start');

setTimeout (function () {
console.log ('run after 0 seconds');
b, 0);

console.log('end'") ;

/%
start

end

run after 0 seconds

*/

Async programming






Callback Hell

Lets say you are buiding an application like instagram or instagram clone. And you want to
allow users to upload their pictures. Now, what functions will you write to allow user to
upload their pictures.

When user click on upload button, you will run a function called - ..., that will open a file
explorer or camera to chose image.

Once user selects image, you will run another function ...> and pass that selected image to
that function. This function ....> will let user to add filters to their image.

Then you will allow user to add caption. For that you will write another function, lets say
-+ for that which will take that filtered photo as argument and let user add caption to the
image.

Then, it the last step, you will write a function . .4 to finally upload the image. That
function will take final image and caption as argument.

We are going to mock this behaviour. Lets say each function take some time to complete
and one function is dependant on another.

Callback Hell



T step 2

2 seconds

the_red ]MO\SQ

3 seTonds

Bltered imoge ond bio

How are you going to achieve this? One function should run after completion of the
previous function and also have the output of the previous function.

Let consider the 4 functions are as below

function stepl() {
setTimeout (function () {
console.log('Selecting image') ;
return 'image';
}, 4000);

Callback Hell



function step2 (image) {
setTimeout (function () {
console.log( Applying filters to ${image}’);
return 'filtered image'
}, 2000);

function step3 (filteredImage) {
setTimeout (function () {
console.log('Adding caption to ${filteredImage}’);
return 'filtered image with caption';
}, 3000);

function step4 (final) {
setTimeout (function () {
console.log( ${final} uploaded’) ;
}, 2000);

You can try calling these function like below. Will it work?

As

let image = stepl();

let filteredImage = step2(image);

let finalImage = step3(filteredImage) ;
step4 (finallImage) ;

/*
Applying filters to undefined
undefined uploaded
Adding caption to undefined
Selecting image

*/
But this will not work as Javascript will not wait forst=p1 function to complete and it
instantly calls scep2 function, then stcp: and then steps instantly.
it prints undefined.
-cepo is called i ..., variable is ...4-:.-4 as nothing is returned from ... . So

Also another problem is .. ..- takes least time to finish, so it gets printed first and then ...,
,then ... sandatlast ..., . This is not what we want. We want it to run sequentially, in
order.

How are we going to achieve this?

We can solve this problem using callbacks.

Callback Hell



What we will do is, we will pass callback functions to each step and will run that callback
function when that step ends.

Lets just focus on first two steps.

We will pass a callback function to ... and the job of that callback functionis to call .-
with tht required image.

Also instead of returning inace from s:cp1, we pass that inage to callback function

and then that callback function will pass that tostep2 after 4 seconds.

function stepl (fn) {
setTimeout (function () {
console.log('Selecting image') ;
// return 'image';
fn('image');
}, 4000);

function step2 (image) {
setTimeout (function () {
console.log( Applying filters to ${image}’);
return 'filtered image'
}, 2000);

stepl (function (image) {
step?2 (image) ;
}):

Now, we want steps to run after =tep2 gets completed. So same like above, we will

pass a callback function to =t<c2 whose job will be to call st=0= with required

arguments.

step2 Will pass filteredimage to callback function and then that callback function will
passthatto step3.

function stepl (cb) {
setTimeout (function () {
console.log('Selecting image') ;
// return 'image';
cb('image') ;
}, 4000);

function step2 (image, cb) {
setTimeout (function () {
console.log( 'Applying filters to ${image}’);
// return 'filtered image'
cb('filtered image');

Callback Hell



}, 2000);

function step3(filteredImage) {
setTimeout (function () {
console.log('Adding caption to ${filteredImage}’);
return 'filtered image with caption';
}, 3000);

Lets wire up the last steps .

function stepl (cb) {
setTimeout (function () {
console.log('Selecting image') ;
// return 'image';
cb('image') ;
}, 4000);

function step2 (image, cb) {
setTimeout (function () {
console.log( 'Applying filters to ${image} ) ;
// return 'filtered image'
cb('filtered image');
}, 2000);

function step3(filteredImage, cb) {
setTimeout (function () {
console.log('Adding caption to ${filteredImage} ) ;
// return 'filtered image with caption';
cb('filtered image with caption');
}, 3000);

function step4d (final) {
setTimeout (function () {
console.log( ${final} uploaded’) ;
}, 2000);

stepl (function (image) {
step2 (image, function (filteredImage) {
step3(filteredImage, function (finalImage) {
step4 (finalImage) ;

Now, everything will work as expected. s:=-2 will be called after 4 seconds with

required argument. Then after 2 seconds st<;3 will be called and after 3 seconds

Callback Hell



steps will be called with required arguments.

Pros
Pros are that you can call one function after the completion of other function in sequential
order. Basically you can do async stuff using callbacks

Cons
There are 2 problems with this approach.

One is quite evident is that our code is growing horizontly instead of vertically. As we add
more callbacks, it will get difficult to maintain the codebase.

Another problem with this code is that we are giving the power to call =t=r2 to

stepl.

What if step2 never get called. In this case we ourselves are writing st=o1 . But it

might not be the case everytime.

Solution
You can solve these problems using Promises.

Callback Hell



Callback Hell

AGK

WA




	Backticks (template strings)
	Numbers
	Precedence of operators

	Some things about variables
	Booleans
	Decision making
	IF
	ELSE
	IF ELSE

	Logical Operators
	&&
	||

	Functions
	Functions
	Returning value from the function
	Challenge (grade calculator)

	undefined and null
	Another example (undefined in argument)
	Another example (undefined in return)
	Challenge (grade calculator contd.)

	Functions - Multiple arguments and argument defaults
	Passing  multiple arguments
	Providing default value to the argument
	Challenge (grade calculator)

	Objects
	Dot notation
	Changing properties
	Challenge

	Methods
	Arrays
	Grabbing individual items
	Setting items

	Array properties and methods
	Loops
	for loop

	3 ways to declare a variable
	const
	var
	var let const


	Execution context and Call stack
	Call stack

	Hoisting
	Question

	Scopes
	Another example

	More differences between var, let and const
	Blocks
	Scope
	Hoisting Question


	Higher order functions
	Passing function to another function
	Returning function from another function
	Some real-world HOF


	Some more array methods
	forEach()
	map()
	filter()

	Closures
	Use of closure
	Emulating private method


	Prototypes
	Accessing properties on Arrays
	Accessing properties on strings
	Inheritance

	Constructor functions
	Class syntax
	Inheritance

	Async programming
	Question
	Question

	Callback Hell
	Pros
	Cons
	Solution


